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Lecture 2: August 28

Representation theory of sl2(C). Finite-dimensional representations of the Lie
algebra sl2(C) play a central role in Hodge theory. We should therefore spend some
time reviewing their basic properties. Let me remind you that the Lie algebra
sl2(C) is 3-dimensional, with basis given by the three matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

They are subject to the following three relations:

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

We already saw last time that every finite-dimensional representation of sl2(C) is
a direct sum of irreducible representations. Let us now analyze the structure of
irreducible representations. Suppose then that V is a finite-dimensional irreducible
representation of sl2(C). Choose a nonzero eigenvector v ∈ V for H, say with
Hv = λv. For the time being, λ ∈ C can be any complex number, but we will
see in a moment that λ actually has to be an integer. From the two relations
[H,X] = 2X and [H,Y ] = −2Y , we get

H(Xv) = [H,X]v +X(Hv) = 2Xv +X(λv) = (λ+ 2)Xv,

H(Y v) = [H,Y ]v + Y (Hv) = −2Y v + Y (λv) = (λ− 2)Y v,

and so X maps the λ-eigenspace Eλ(H) into Eλ+2(H), whereas Y maps Eλ(H) into
Eλ−2(H). In particular, the vectors v, Y v, Y 2v, . . . are linearly independent, and
since V is finite-dimensional, this means that Y nv = 0 for large n. After replacing
v by its image under a suitable power of Y , we may therefore assume in addition
that Y v = 0. So from now on, Hv = λv and Y v = 0.

Now consider the sequence of vectors

v,Xv,X2v, . . . , Xnv, . . .

The action of X takes each vector to the next one; the following lemma describes
the action of Y .

Lemma 2.1. If Hv = λv and Y v = 0, then one has

Y Xnv = −n(λ+ n− 1)Xn−1v,

Y nXnv = (−1)nn! · λ(λ+ 1) · · · (λ+ n− 1)v,

for every n ≥ 0.

Proof. We prove the first identity by induction on n ≥ 0, with the case n = 0 being
trivial. For n ≥ 0, the relation [X,Y ] = H gives

Y Xn+1v = −HXnv +XYXnv = −(λ+ 2n)Xnv − n(λ+ n− 1)Xnv

= −(n+ 1)(λ+ n)Xnv,

as required. This gives

Y n+1Xn+1v = −(n+ 1)(λ+ n)Y nXnv,

and so the second identity again follows by induction on n ≥ 0. �

Now let n ≥ 0 be the least integer such that Xnv 6= 0 and Xn+1v = 0; this exists
for the same reason as above. The lemma shows that the subspace generated by
v,Xv, . . . ,Xnv is stable under the action of H, X, and Y ; since V is an irreducible
representation, it follows that

V = C〈v,Xv, . . . ,Xnv〉,
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and therefore dimV = n+1. Now let us show that λ = −n. Again from the lemma,

0 = Y n+1Xn+1v = (−1)n+1(n+ 1)! · λ(λ+ 1) · · · (λ+ n− 1)(λ+ n)v,

and so λ has to be one of the integers 0,−1, . . . ,−n. Now if λ 6= −n, then

Y nXnv = (−1)nn! · λ(λ+ 1) · · · (λ+ n− 1)v = 0,

and so the subspace generated by Xv,X2v, . . . , Xnv would also be stable under
the action of H, X, and Y ; but since V is irreducible, this cannot be. Therefore
λ = −n is the only possibility.

To summarize: if V is an irreducible representation of sl2(C) with dimV = n+1,
then there exists a nonzero vector v ∈ V with Hv = −nv and Y v = 0, and

V = C〈v,Xv, . . . ,Xnv〉.
In this basis, the action of H is diagonal, with eigenvalues −n,−n + 2, . . . , n; the
action of X is the obvious one; and the action of Y is described by the lemma. In
particular, sl2(C) has, up to isomorphism, a unique irreducible representation of
every finite dimension.

Since every finite-dimensional representation of sl2(C) is a direct sum of irre-
ducible representations, we can draw the following conclusions:

(1) If V is a finite-dimensional representation of sl2(C), then the action of H is
diagonalizable, and all eigenvalues of H are integers. If we set Vk = Ek(H),
for k ∈ Z, this means that

V =
⊕

k∈Z
Vk,

and so V becomes a graded vector space. Moreover, XVk ⊆ Vk+2 and
Y Vk ⊆ Vk−2.

(2) For every k ≥ 1, the operator Xk gives an isomorphism between V−k and
Vk. This is clearly true for irreducible representations, and therefore in
general. In particular, dimV−k = dimVk, and so the entire representation
is symmetric around the piece of weight 0.

(3) Every irreducible representation is generated by a “primitive vector”, mean-
ing a vector in the kernel of Y ; these are also sometimes called “vectors of
lowest weight”.

The following schematic picture shows a typical representation of sl2(C):

82

Representation theory. The relation [L,⇤] = (k � n) id on Ak(M) can be in-
terpreted in terms of representation theory of Lie algebras. Recall that the Lie
algebra sl2 consists of all 2⇥2-matrices of trace zero, with Lie bracket given by the
commutator [A, B] = AB � BA. As a vector space, sl2 is three-dimensional, and
the three matrices

E =

✓
0 1
0 0

◆
, F =

✓
0 0
1 0

◆
, H =

✓
1 0
0 �1

◆

form a natural basis. An easy computation shows that

[H,E] = 2E, [H,F ] = �2F, [E,F ] = H.

A representation of the Lie algebra sl2 is a linear map ⇢ : sl2 ! End(V ) to the
endomorphisms of a vector space V , such that ⇢

�
[A, B]

�
= ⇢(A)⇢(B) � ⇢(B)⇢(A).

Equivalently, it consists of three linear operators ⇢(E), ⇢(F ), and ⇢(H) on V ,
subject to the three commutator relations above.

Lemma 27.3. The operators L, ⇤, and H, with H = (k � n) id on Ak(M), deter-

mine a representation of sl2 on the vector space A⇤(M) =
L2n

k=0 Ak(M).

Proof. By Lemma 26.1, [L,⇤] = H; on the other hand, if ↵ 2 Ak(M), then we have

[H,L]↵ = H(! ^ ↵) � ! ^ (k � n)↵ = 2! ^ ↵ = 2L↵,

and likewise [H,⇤]↵ = �2⇤↵. ⇤

Now it is a general fact in representation theory that any finite-dimensional
representation of sl2 decomposes into direct sum of irreducible representations.
Each irreducible representation in turn is generated by a primitive vector v 2 V ,
satisfying Fv = 0 and Hv = �`v, and consists of the vectors v, Ev, E2v, . . . , E`v.
Note that these are all eigenvectors for H, with eigenvalues �`, �`+2, �`+4, . . . ,
`, respectively. Thus a typical representation has the following form:

• 3

• 2

• • 1

• • 0

• • �1

• �2

• �3

1

Each column stands for one irreducible representation; the arrows correspond to
the action of E, and the integers indicate the weight of the corresponding vectors,
meaning the eigenvalue of H. This picture gives a vivid illustration of the Lefschetz
decomposition and the Hard Lefschetz Theorem.

The Hodge-Riemann bilinear relations. If ↵ 2 Ap,q(M) is primitive, then we
have seen that Ln�k+1↵ = 0, while Ln�k↵ 6= 0 (here k = p + q). Observe that
Ln�k↵ is a form of type (p + n � k, q + n � k) = (n � q, n � p), and that the same

Each dot stands for a one-dimensional subspace, the vertical arrows indicate the
action of X, and the numbers on the right are the eigenvalues of H, which are
usually called the weights of the representation. Note again the symmetry around
the center.
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We have just seen that an irreducible representation has a basis consisting of
a primitive vector and its images under powers of X. This fact generalizes to
arbitrary finite-dimensional representations as follows.

Proposition 2.2. Let V be a finite-dimensional representation of sl2(C), and set
Vk = Ek(H). Every vector v ∈ Vk has a unique decomposition

v =
∑

j≥max(k,0)

Xj

j!
vj

with vj ∈ Vk−2j ∩ kerY , called the Lefschetz decomposition.

Proof. We did not prove this in class, but I will write down a proof for the sake of
completeness. Let me first explain where the range of the summation comes from.
We have seen above that if v ∈ V is a nonzero vector such that Hv = −nv and
Y v = 0, then one has Xnv 6= 0 and Xn+1v = 0. In the case of vj ∈ Vk−2j , this says
that X2j−k+1v = 0, and so Xjvj = 0 whenever j ≥ 2j − k + 1. This is why only
terms with j ≥ k appear.

The existence of a Lefschetz decomposition is easy: every finite-dimensional rep-
resentation is a direct sum of irreducible ones, and for an irreducible representation,
the result is obvious. See also the picture above.

To prove the uniqueness of the decomposition, it is enough to show that if

0 =
∑

j≥0

Xj

j!
vj ∈ Vk

for certain vectors vj ∈ Vk−2j ∩ kerY , then actually Xjvj = 0 for every j. Since
Vk = 0 for k � 0, we can argue by descending induction on k. After applying X
to the sum, we get

0 =
∑

j≥0

Xj+1

j!
vj ∈ Vk+2,

and therefore Xj+1vj = 0 by induction. But vj ∈ Vk−2j is a primitive vector, and
so X2j−kvj = 0 implies that vj = 0. The conclusion is that vj = 0 for 2j−k ≥ j+1,
hence for j ≥ k + 1. Since we have already seen that Xjvj = 0 for j ≤ k − 1, this
leaves at most the term Xkvk/k! (if k ≥ 0), which must therefore also be zero. �

The Lefschetz decomposition reduces most questions about arbitrary vectors in
an sl2(C)-representation to the special case of primitive vectors.

We have seen above that finite-dimensional representations of sl2(C) is a direct
sum of weight spaces, which are symmetric around weight 0. There is another useful
way to see this symmetry, involving the Lie group SL2(C). A basic fact is that every
finite-dimensional representation of the Lie algebra sl2(C) lifts to a representation
of the Lie group SL2(C). The lifting is compatible with the exponential map, in
the following way. If M ∈ sl2(C), then

eM =

∞∑

n=0

Mn

n!
∈ SL2(C),

and the element eM acts on the representation as id +M+ 1
2M

2+· · · . Now consider
the so-called Weyl element

w =

(
0 1
−1 0

)
∈ SL2(C).

A brief computation shows that w = eXe−Y eX , and so one can use the exponential
series to see how w acts on representations of sl2(C).



9

The point of introducing w is that it explains the symmetry between the weight
spaces Vk and V−k. Namely, the Lie group SL2(C) acts on its Lie algebra sl2(C) by
conjugation, and under this action, one has

wXw−1 = −Y, wY w−1 = −X, wHw−1 = −H.
This can be checked by direct computation: for example,

(
0 1
−1 0

)(
0 1
0 0

)(
0 −1
1 0

)
=

(
0 0
−1 0

)
.

The identity wHw−1 = −H means that the action of w interchanges the two weight
spaces Vk and V−k, which must therefore be of the same dimension.

Note. The element

w2 =

(
−1 0
0 −1

)
∈ SL2(C)

acts on the weight space Vk as (−1)k, and not as multiplication by −1. Symboli-
cally, one has the identity w2 = (−1)H , where the right-hand side is a convenient
abbreviation for the power series eiπH .

If v ∈ V−n is a primitive vector, we can compute wv ∈ Vn with the help of the
formula w = eXe−Y eX . Indeed,

we−Xv = eXe−Y v = eXv,

using Y v = 0 in the second step. Expanding both sides into power series gives

w

∞∑

j=0

(−1)j
Xj

j!
v =

∞∑

j=0

Xj

j!
v,

and after projecting to the weight space Vn, we find that

(2.3) wv =
Xn

n!
v.

This shows that, at least as far as the action of w is concerned, the most natural
basis for the irreducible representation generated by v is

v,Xv,
X2

2!
v, . . . ,

Xn

n!
v.

If we instead project to the weight space Vn−2j , we get the useful identity

(2.4) w
Xj

j!
v = (−1)j

Xn−j

(n− j)!v,

valid for any v ∈ V−n ∩ kerY .

Exercise 2.1. Show that the identity in (2.4) is actually symmetric in j and n− j.
We can use the Lefschetz decomposition to get a simple formula for the action

of w on arbitrary vectors.

Proposition 2.5. Write the Lefschetz decomposition of v ∈ Vk as

v =
∑

j≥max(k,0)

Xj

j!
vj

with vj ∈ Vk−2j ∩ kerY primitive. Then one has

wv =
∑

j≥max(k,0)

(−1)j
Xj−k

(j − k)!
vj .

Proof. Since vj ∈ Vk−2j is primitive, this follows from (2.4) by taking n = 2j−k. �
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Weil’s identity and polarizations. We return to the example of compact Kähler
manifolds. Let X be a compact Kähler manifold of dimension n, with Kähler form
ω. Before we get to constructing a polarization on the cohomology of X, I first
want to make some comments about the choice of i =

√
−1. (This is a topic that

my graduate students are already familiar with.) You may remember that
∫

X

ωn

n!
= vol(X)

is the volume of X with respect to the chosen Kähler metric h. The metric itself
has nothing to do with the square root of −1, but the Kähler form is obtained by
taking the imaginary part of the metric, viewed as a 2-tensor, and the imaginary
part of a complex number depends on i. We can fix this problem by working with

2πi ω

which does not depend on the choice of i =
√
−1. (The factor 2π is there to make

the formulas in the geometric case nicer.)

Example 2.6. On P1 with the Fubini-Study metric, 2πi ω is equal to the first Chern
class of the line bundle OP1(1).

Although not apparent from the notation, the integral also depends on the choice
of i. The reason is that integration requires an orientation of the underlying smooth
manifold of X, and the standard orientation of C is the one in which 1, i forms a
positively-oriented basis. We can fix this problem by working with

1

(2πi)n

∫

X

which is independent of the choice of i. (Replacing i by −i changes the orientation
of C by a factor of −1, hence the orientation of the n-dimensional complex manifold
X by (−1)n, but this change is absorbed by denominator.) So a better way to write
the above formula for the volume is

1

(2πi)n

∫

X

(2πi ω)n

n!
= vol(X),

because now everything is independent of i.
Having said this, we should redefine the sl2(C)-action on the cohomology of X.

Namely, we should let X ∈ sl2(C) act as

X = 2πiL : Ak(X,C)→ Ak+2(X,C)

and we should let Y ∈ sl2(C) act as

Y =
1

2πi
Λ: Ak(X,C)→ Ak−2(X,C).

Their commutator H = [X,Y ] still acts as multiplication by k−n on Ak(X,C), and
so we obtain an infinite-dimensional representation of sl2(C) on the space of forms,
and a finite-dimensional representation on the cohomology of X. Even though the
space of all forms is infinite-dimensional, the subrepresentation generated by any
particular form is of course finite-dimensional, and so the Lefschetz decomposition
also exists on the level of forms.

Consider again the Weyl element w = eXe−Y eX ∈ SL2(C). It maps Hn−k(X,C)
isomorphically to Hn+k(X,C), exactly like the Hodge ∗-operator. This suggests
that the two operators should be related.

Proposition 2.7. For every α ∈ Ap,q(X), one has

∗α = (2π)k · (−1)qε(k)

(2πi)n
· wα,
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where k = p+ q and ε(k) = (−1)k(k−1)/2.

Proof. To simplify the notation, set k = p+ q. Suppose first that Y α = 0. Then

wα =
Xn−k

(n− k)!
α

by virtue of (2.3). If we substitute this into Weil’s identity (1.8), we get

∗α = iq−pε(k)
Ln−k

(n− k)!
α =

iq−pε(k)

(2πi)n−k
Xn−k

(n− k)!
α = (2π)k · (−1)qε(k)

(2πi)n
· wα,

as claimed. The general case follows from this special case by using the Lefschetz
decomposition. Namely, we have ∗L = Λ∗, and therefore

∗X = (2πi)2Y ∗ = −(2π)2Y ∗ .
At the same time, wXw−1 = −Y , and therefore

wX = −Y w.
Now write the Lefschetz decomposition of α ∈ Ap,q(X) as

α =
∑

j≥max(k,0)

Xj

j!
αj ,

where αj ∈ Ap−j,q−j(X) ∩ kerY is primitive. Then

∗α =
∑

j≥max(k,0)

(−1)j(2π)2j Y
j

j!
∗αj

=
∑

j≥max(k,0)

(−1)j(2π)2j Y
j

j!
(2π)k−2j (−1)q−jε(k − 2j)

(2πi)n
wαj .

Using the fact that ε(k − 2j) = (−1)jε(k), we can rewrite this as

∗α = (2π)k
(−1)qε(k)

(2πi)n

∑

j≥max(k,0)

(−1)j
Y j

j!
wαj

= (2π)k
(−1)qε(k)

(2πi)n

∑

j≥max(k,0)

w
Xj

j!
αj = (2π)k

(−1)qε(k)

(2πi)n
· wα.

This is the desired formula. �
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